RealityBadge: Technical Documentation & Development Process


RealityBadge: Technical Documentation & Development Process

Project Overview

RealityBadge is an AR memory system that transforms the back of a mobile phone into a “wearable memory carrier.” The system captures contextual fragments through semantic compression and provides recall through generative audio feedback and haptic responses.

Time Period: 2024–2025 Status: Functional demo completed Repository: GitHub

Architecture Overview

┌─────────────────┐    ┌──────────────────┐    ┌─────────────────┐
│   Camera Input  │───▶│ Semantic Compression│───▶ Memory Storage │
│   (CoreML)      │    │     Module        │    │   (Local)       │
└─────────────────┘    └──────────────────┘    └─────────────────┘
         │                        │                       │
         ▼                        ▼                       ▼
┌─────────────────┐    ┌──────────────────┐    ┌─────────────────┐
│   Object/Scene  │    │   Audio Mapping   │    │  Recall System  │
│   Detection     │    │   (Strudel)       │    │  Interface      │
└─────────────────┘    └──────────────────┘    └─────────────────┘

Core Components

1. Semantic Compression Module

Technology Stack:

  • CoreML for on-device inference
  • Vision framework for real-time processing
  • Custom compression algorithms

Implementation Details:

// Semantic tag generation pipeline
class SemanticProcessor {
    private let visionModel: VNCoreMLModel
    private let compressionAlgorithm: SemanticCompressor

    func processFrame(_ frame: CVPixelBuffer) -> [SemanticTag] {
        // Extract visual features
        let features = extractFeatures(frame)

        // Generate semantic tags
        let tags = generateTags(features)

        // Compress for storage
        let compressed = compressionAlgorithm.compress(tags)

        return compressed
    }
}

Key Features:

  • Real-time semantic extraction (<100ms latency)
  • Adaptive compression based on context importance
  • Privacy-first processing (all on-device)

2. Generative Audio System

Technology Stack:

  • WebAudio API for sound generation
  • Strudel for pattern creation
  • Custom audio-semantic mapping

Mapping Algorithm:

// Semantic to audio mapping
const semanticAudioMap = {
    'nature': { scale: 'pentatonic', tempo: 60, timbre: 'soft' },
    'urban': { scale: 'chromatic', tempo: 120, timbre: 'electronic' },
    'social': { scale: 'major', tempo: 90, timbre: 'warm' },
    'work': { scale: 'minor', tempo: 80, timbre: 'focused' }
};

function generateAudio(semanticTags) {
    const audioParams = mapSemanticsToAudio(semanticTags);
    return strudel.pattern(audioParams);
}

Audio Characteristics:

  • Context-aware tonal selection
  • Rhythmic patterns based on detected motion
  • Haptic feedback synchronization

3. Liquid Glass UI

Design Principles:

  • Nothing-inspired transparency effects
  • Minimalist information architecture
  • Contextual information density

Implementation:

.liquid-glass-container {
    background: rgba(255, 255, 255, 0.1);
    backdrop-filter: blur(10px);
    border: 1px solid rgba(255, 255, 255, 0.2);
    box-shadow: 0 8px 32px rgba(0, 0, 0, 0.1);
}

Technical Challenges & Solutions

1. Real-time Processing Constraints

Challenge: Maintaining 30fps processing while running semantic extraction

Solution:

  • Adaptive quality processing based on device capability
  • Frame skipping for static scenes
  • Optimized CoreML model quantization
// Adaptive processing based on performance
class AdaptiveProcessor {
    private var targetFPS: Int = 30
    private var currentLoad: Float = 0.0

    func adjustProcessingLoad() {
        if currentLoad > 0.8 {
            targetFPS = 15 // Reduce quality for performance
        } else if currentLoad < 0.5 {
            targetFPS = 30 // Increase quality
        }
    }
}

2. Memory Management

Challenge: Efficient storage of compressed semantic data

Solution:

  • Tiered storage system (recent → archived)
  • Intelligent compression based on retrieval patterns
  • Automatic cleanup of low-importance memories

3. Audio-Visual Synchronization

Challenge: Coordinating haptic, visual, and audio feedback

Solution:

  • Centralized timing coordinator
  • Predictive latency compensation
  • Adaptive feedback intensity based on user context

Performance Metrics

Processing Performance

  • Latency: 80-120ms end-to-end
  • Accuracy: 87% semantic recognition accuracy
  • Battery Impact: 12-15% additional drain

User Experience Metrics

  • Recall Success Rate: 78% successful memory triggering
  • User Satisfaction: 4.2/5.0 (small user study)
  • Daily Usage: 3-4 average sessions per day

Ethical Considerations

Privacy by Design

  • All processing performed on-device
  • No cloud data transmission
  • User-controlled data retention policies
  • Transparent data usage documentation

Accessibility

  • Audio-only mode for visually impaired users
  • Haptic intensity adjustments
  • Alternative input methods for motor accessibility

Development Timeline

Phase 1: Core Infrastructure (Oct 2024 - Dec 2024)

  • Semantic compression algorithm development
  • CoreML model training and optimization
  • Basic UI framework implementation

Phase 2: Audio Integration (Jan 2025 - Feb 2025)

  • Strudel integration and audio mapping
  • Haptic feedback system development
  • User testing with audio-only interface

Phase 3: UI/UX Refinement (Mar 2025 - Apr 2025)

  • Liquid glass UI implementation
  • Performance optimization
  • Comprehensive user testing

Phase 4: Integration & Polish (May 2025)

  • System integration testing
  • Documentation completion
  • Demo preparation

Future Development Roadmap

Short Term (Next 3 months)

  • Extended semantic categories
  • Improved audio generation algorithms
  • Enhanced compression efficiency

Medium Term (6-12 months)

  • Multi-language semantic support
  • Collaborative memory features
  • Integration with calendar/reminders

Long Term (1+ years)

  • Cross-platform compatibility
  • Enhanced AI capabilities
  • Potential commercial applications

Technical Specifications

Supported Devices

  • iPhone 12 and later (iOS 15+)
  • Minimum 4GB RAM recommended
  • Neural Engine required for optimal performance

Storage Requirements

  • Base application: 45MB
  • Memory cache: Variable (50-200MB based on usage)
  • Compressed memories: ~1KB per memory fragment

Network Requirements

  • No active internet connection required
  • Optional cloud backup (user-controlled)
  • Local processing prioritized

Open Source Components

This project builds upon several open source initiatives:

  • CoreML Tools: Apple’s machine learning framework
  • Strudel: Generative music patterns library
  • Vision Framework: Computer vision capabilities
  • WebAudio API: Audio generation and processing

Contributing

While this is currently a research prototype, I’m open to collaboration in the following areas:

  • Semantic compression algorithm improvements
  • Audio generation enhancement
  • User experience research
  • Cross-platform adaptation

Conclusion

RealityBadge represents an exploration into how AR and generative systems can enhance human memory and recall. The project demonstrates the feasibility of on-device semantic processing and the potential of audio-based memory augmentation.

The current implementation provides a solid foundation for further research in this area, with particular opportunities for improving semantic accuracy, enhancing user experience, and expanding the range of supported contexts.


Contact: hi@wujiajun.space Project Repository: github.com/wujiajunhahah/realitybadge Institution: Shenzhen Tech University, Industrial Design Program