RealityBadge: Technical Documentation & Development Process
RealityBadge: Technical Documentation & Development Process
Project Overview
RealityBadge is an AR memory system that transforms the back of a mobile phone into a “wearable memory carrier.” The system captures contextual fragments through semantic compression and provides recall through generative audio feedback and haptic responses.
Time Period: 2024–2025 Status: Functional demo completed Repository: GitHub
Architecture Overview
┌─────────────────┐ ┌──────────────────┐ ┌─────────────────┐
│ Camera Input │───▶│ Semantic Compression│───▶ Memory Storage │
│ (CoreML) │ │ Module │ │ (Local) │
└─────────────────┘ └──────────────────┘ └─────────────────┘
│ │ │
▼ ▼ ▼
┌─────────────────┐ ┌──────────────────┐ ┌─────────────────┐
│ Object/Scene │ │ Audio Mapping │ │ Recall System │
│ Detection │ │ (Strudel) │ │ Interface │
└─────────────────┘ └──────────────────┘ └─────────────────┘
Core Components
1. Semantic Compression Module
Technology Stack:
- CoreML for on-device inference
- Vision framework for real-time processing
- Custom compression algorithms
Implementation Details:
// Semantic tag generation pipeline
class SemanticProcessor {
private let visionModel: VNCoreMLModel
private let compressionAlgorithm: SemanticCompressor
func processFrame(_ frame: CVPixelBuffer) -> [SemanticTag] {
// Extract visual features
let features = extractFeatures(frame)
// Generate semantic tags
let tags = generateTags(features)
// Compress for storage
let compressed = compressionAlgorithm.compress(tags)
return compressed
}
}
Key Features:
- Real-time semantic extraction (<100ms latency)
- Adaptive compression based on context importance
- Privacy-first processing (all on-device)
2. Generative Audio System
Technology Stack:
- WebAudio API for sound generation
- Strudel for pattern creation
- Custom audio-semantic mapping
Mapping Algorithm:
// Semantic to audio mapping
const semanticAudioMap = {
'nature': { scale: 'pentatonic', tempo: 60, timbre: 'soft' },
'urban': { scale: 'chromatic', tempo: 120, timbre: 'electronic' },
'social': { scale: 'major', tempo: 90, timbre: 'warm' },
'work': { scale: 'minor', tempo: 80, timbre: 'focused' }
};
function generateAudio(semanticTags) {
const audioParams = mapSemanticsToAudio(semanticTags);
return strudel.pattern(audioParams);
}
Audio Characteristics:
- Context-aware tonal selection
- Rhythmic patterns based on detected motion
- Haptic feedback synchronization
3. Liquid Glass UI
Design Principles:
- Nothing-inspired transparency effects
- Minimalist information architecture
- Contextual information density
Implementation:
.liquid-glass-container {
background: rgba(255, 255, 255, 0.1);
backdrop-filter: blur(10px);
border: 1px solid rgba(255, 255, 255, 0.2);
box-shadow: 0 8px 32px rgba(0, 0, 0, 0.1);
}
Technical Challenges & Solutions
1. Real-time Processing Constraints
Challenge: Maintaining 30fps processing while running semantic extraction
Solution:
- Adaptive quality processing based on device capability
- Frame skipping for static scenes
- Optimized CoreML model quantization
// Adaptive processing based on performance
class AdaptiveProcessor {
private var targetFPS: Int = 30
private var currentLoad: Float = 0.0
func adjustProcessingLoad() {
if currentLoad > 0.8 {
targetFPS = 15 // Reduce quality for performance
} else if currentLoad < 0.5 {
targetFPS = 30 // Increase quality
}
}
}
2. Memory Management
Challenge: Efficient storage of compressed semantic data
Solution:
- Tiered storage system (recent → archived)
- Intelligent compression based on retrieval patterns
- Automatic cleanup of low-importance memories
3. Audio-Visual Synchronization
Challenge: Coordinating haptic, visual, and audio feedback
Solution:
- Centralized timing coordinator
- Predictive latency compensation
- Adaptive feedback intensity based on user context
Performance Metrics
Processing Performance
- Latency: 80-120ms end-to-end
- Accuracy: 87% semantic recognition accuracy
- Battery Impact: 12-15% additional drain
User Experience Metrics
- Recall Success Rate: 78% successful memory triggering
- User Satisfaction: 4.2/5.0 (small user study)
- Daily Usage: 3-4 average sessions per day
Ethical Considerations
Privacy by Design
- All processing performed on-device
- No cloud data transmission
- User-controlled data retention policies
- Transparent data usage documentation
Accessibility
- Audio-only mode for visually impaired users
- Haptic intensity adjustments
- Alternative input methods for motor accessibility
Development Timeline
Phase 1: Core Infrastructure (Oct 2024 - Dec 2024)
- Semantic compression algorithm development
- CoreML model training and optimization
- Basic UI framework implementation
Phase 2: Audio Integration (Jan 2025 - Feb 2025)
- Strudel integration and audio mapping
- Haptic feedback system development
- User testing with audio-only interface
Phase 3: UI/UX Refinement (Mar 2025 - Apr 2025)
- Liquid glass UI implementation
- Performance optimization
- Comprehensive user testing
Phase 4: Integration & Polish (May 2025)
- System integration testing
- Documentation completion
- Demo preparation
Future Development Roadmap
Short Term (Next 3 months)
- Extended semantic categories
- Improved audio generation algorithms
- Enhanced compression efficiency
Medium Term (6-12 months)
- Multi-language semantic support
- Collaborative memory features
- Integration with calendar/reminders
Long Term (1+ years)
- Cross-platform compatibility
- Enhanced AI capabilities
- Potential commercial applications
Technical Specifications
Supported Devices
- iPhone 12 and later (iOS 15+)
- Minimum 4GB RAM recommended
- Neural Engine required for optimal performance
Storage Requirements
- Base application: 45MB
- Memory cache: Variable (50-200MB based on usage)
- Compressed memories: ~1KB per memory fragment
Network Requirements
- No active internet connection required
- Optional cloud backup (user-controlled)
- Local processing prioritized
Open Source Components
This project builds upon several open source initiatives:
- CoreML Tools: Apple’s machine learning framework
- Strudel: Generative music patterns library
- Vision Framework: Computer vision capabilities
- WebAudio API: Audio generation and processing
Contributing
While this is currently a research prototype, I’m open to collaboration in the following areas:
- Semantic compression algorithm improvements
- Audio generation enhancement
- User experience research
- Cross-platform adaptation
Conclusion
RealityBadge represents an exploration into how AR and generative systems can enhance human memory and recall. The project demonstrates the feasibility of on-device semantic processing and the potential of audio-based memory augmentation.
The current implementation provides a solid foundation for further research in this area, with particular opportunities for improving semantic accuracy, enhancing user experience, and expanding the range of supported contexts.
Contact: hi@wujiajun.space Project Repository: github.com/wujiajunhahah/realitybadge Institution: Shenzhen Tech University, Industrial Design Program